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Matching Markets

‣ Matching markets embody a number of basic principles — 

‣ People naturally have different preferences for different kinds of 
goods 

‣ Prices can decentralize the allocation of goods to people 

‣ Such prices can in fact lead to allocations that are socially optimal 

‣ We are going to progress through a succession of increasingly rich 
models
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Bipartite graphs and perfect matchings
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Figure 10.1. (a) An example of a bipartite graph and (b) a perfect matching in this graph,
indicated via the dark edges.

Bipartite Graphs. The model we start with is called the bipartite matching problem,
and we can motivate it via the following scenario. Suppose that the administrators
of a college dormitory are assigning rooms to returning students for a new academic
year; each room is designed for a single student, and each student is asked to list
several acceptable options for the room they’d like to get. Students can have different
preferences over rooms; some people might want larger rooms, quieter rooms, sunnier
rooms, and so forth – and so the lists provided by the students may overlap in complex
ways.

We can model the lists provided by the students using a graph, as follows. There is
a node for each student, a node for each room, and an edge connecting a student to a
room if the student has listed the room as an acceptable option. Figure 10.1(a) shows
an example with five students and five rooms (indicating, for instance, that the student
named Vikram has listed each of rooms 1, 2, and 3 as acceptable options, while the
student named Wendy only listed room 1).

This type of graph is bipartite, an important property that we saw earlier, in a
different context, in talking about affiliation networks in Chapter 4. In a bipartite graph
the nodes are divided into two categories, and each edge connects a node in one category
to a node in the other category. In this case, the two categories are students and rooms.
Just as bipartite graphs were useful in Chapter 4 to represent the participation of people
in different activities, here they are useful for modeling situations in which individuals
or objects of one type are being assigned or matched up with individuals or objects of
another type. As in Chapter 4, we generally draw bipartite graphs as in Figure 10.1(a),
with the two different categories of nodes drawn as two parallel vertical columns, and
the edges crossing between the two columns.

A bipartite graph with student 
room preferences A perfect matching



Perfect Matching
‣ When there are an equal number of nodes on each side of a bipartite 

graph, a perfect matching is an assignment of nodes on the left to 
nodes on the right, in such a way that 
‣ each node is connected by an edge to the node it is assigned to 
‣ no two nodes on the left are assigned to the same node on the 

right 
‣ A perfect matching can also be viewed as a choice of edges in the 

bipartite graph so that each node is the endpoint of exactly one of 
the chosen edges
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What if a bipartite graph has no perfect 
matching? Do we need to go through all the 
possibilities and show that no pairing works?



A bipartite graph with no perfect matching
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Figure 10.2. (a) A bipartite graph with no perfect matching and (b) a constricted set demon-
strating there is no perfect matching.

If there’s a constricted set S in a bipartite graph, it immediately shows that there can
be no perfect matching: each node in S would have to be matched to a different node
in N (S), but there are more nodes in S than there are in N (S), so this is not possible.

So it’s fairly easy to see that constricted sets form one kind of obstacle to the presence
of perfect matchings. What’s also true, though far from obvious, is that constricted sets
are in fact the only kind of obstacle. This is the crux of the following fact, known as
the Matching Theorem.

Matching Theorem: If a bipartite graph (with equal numbers of nodes on the
left and right) has no perfect matching, then it must contain a constricted set.

The Matching Theorem was independently discovered by Denes König in 1931 and
Phillip Hall in 1935 [280]. Without the theorem, one might have imagined that a
bipartite graph could fail to have a perfect matching for all sorts of reasons, some
of them perhaps even too complicated to explain. But what the theorem says is that
the simple notion of a constricted set is in fact the only obstacle to having a perfect
matching. For our purposes in this chapter, we will only need to use the fact that the
Matching Theorem is true, without having to go into the details of its proof. However,
its proof is elegant as well, and we describe a proof of the theorem in Section 10.6 at
the end of this chapter.

One way to think about the Matching Theorem, using our example of students and
rooms, is as follows. After the students submit their lists of acceptable rooms, it’s easy
for the dormitory administrators to explain to the students what happened, regardless
of the outcome. Either they can announce the perfect matching giving the assignment
of students to rooms, or they can explain that no assignment is possible by indicating a

constricted 
set



Constricted Set and the Matching Theorem
‣ a set S of nodes on the right-hand side is constricted if S is strictly larger than the 

neighbour set of S — N(S) 
‣ S contains strictly more nodes than N(S) does 
‣ With a constricted set, there can be no perfect matching 

‣ The Matching Theorem (1931, 1935) — 

‣ This implies that a constricted set is the only obstacle to having a perfect 
matching!
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If a bipartite graph (with equal numbers of nodes on 
the left and right) has no perfect matching, then it 

must contain a constricted set.



Extending the simple model
‣ Rather than simple “acceptable-or-not” choices, we allow each 

individual to express how much they like the object, in numerical 
form — the “valuations” 

‣ Optimal assignment: one that maximizes the total valuations (or 
the quality) of an assignment 

‣ Intuitively, it maximizes the total “happiness” 

‣ We need a natural way to determine an optimal assignment

9



Optimal assignment: an example
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Figure 10.3. (a) A set of valuations. Each person’s valuations for the objects appear as a list
next to him or her. (b) An optimal assignment with respect to these valuations.

set of students who collectively gave too small a set of acceptable options. This latter
case is a constricted set.

10.2 Valuations and Optimal Assignments

The problem of bipartite matching from the previous section illustrates some aspects
of a market in a very simple form: individuals express preferences in the form of
acceptable options; a perfect matching then solves the problem of allocating objects
to individuals according to these preferences; and if there is no perfect matching, it is
because of a “constriction” in the system that blocks it.

We now want to extend this model to introduce some additional features. First,
rather than expressing preferences simply as binary “acceptable-or-not” choices, we
allow each individual to express how much they’d like each object, in numerical form.
In our example of students and dorm rooms from Section 10.1, suppose that, rather
than specifying a list of acceptable rooms, each student provides a numerical score for
each room, indicating how happy they’d be with it. We will refer to these numbers as
the students’ valuations for the respective rooms. Figure 10.3(a) shows an example of
this with three students and three rooms; for instance, Xin’s valuations for rooms 1, 2,
and 3 are 12, 2, and 4, respectively (while Yoram’s valuations for rooms 1, 2, and 3 are
8, 7, and 6, respectively). Notice that students may disagree on which rooms are better,
and by how much.

We can define valuations whenever we have a collection of individuals evaluating
a collection of objects. And using these valuations, we can evaluate the quality of
an assignment of objects to individuals, as follows: it is the sum of each individual’s
valuation for what they get.1 Thus, for example, the quality of the assignment illustrated
in Figure 10.3(b) is 12 + 6 + 5 = 23.

1 Of course, this notion of the quality of an assignment is appropriate only if adding individual’s valuations makes
sense. We can interpret individual valuations here as the maximum amount the individuals are willing to pay
for items, so the sum of their valuations for the items they are assigned is just the maximum amount the group
would be willing to pay in total for the assignment. The issue of adding individuals’ payoffs was also discussed
in Chapter 6, where we defined social optimality using the sum of payoffs in a game.



Using Prices to Decentralize the Market
‣ We wish to move away from a central “administrator” to 
determine the perfect matching or an optimal assignment 

‣ Each individual makes her own decisions based on prices, in a 
decentralized market

11



Using Prices to Decentralize the Market
‣ Example: the Real Estate Market 
‣ A collection of sellers, each having a house for sale with a price pi 
‣ An equal-sized collection of buyers, each having a valuation for each 

house 
‣ The valuation that a buyer j has for the house held by seller i will be 

denoted vij  
‣ The buyer’s payoff is vij - pi 

‣ The seller(s) who maximizes a buyer’s payoff is her preferred seller(s) (as 
long as the payoff is not negative, otherwise there’s no preferred seller)

12



The Real Estate Market: Buyer valuations
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Figure 10.5. (a) Three sellers (a, b, and c) and three buyers (x , y, and z). For each buyer node,
the valuations for the houses of the respective sellers appear in a list next to the node. (b) Each
buyer creates a link to her preferred seller. The resulting set of edges is the preferred-seller
graph for this set of market-clearing prices. (c) The preferred-seller graph for prices 2, 1, and
0 (prices that don’t clear the market). (d) The preferred-seller graph for prices 3, 1, and 0
(market-clearing prices, where tie-breaking is required).

In Figures 10.5(b)–10.5(d), we show the results of three different sets of prices for
the same set of buyer valuations. Note how the sets of preferred sellers for each buyer
change depending on what the prices are. For example, in Figure 10.5(b), buyer x

would receive a payoff of 12 − 5 = 7 if she buys from a, a payoff of 4 − 2 = 2 if she
buys from b, and 2 − 0 = 2 if she buys from c. This is why a is her unique preferred
seller. We can similarly determine the payoffs for buyers y (3, 5, and 6) and z (2, 3,
and 2) for transacting with sellers a, b, and c, respectively.

Market-Clearing Prices. Figure 10.5(b) has the particularly nice property that, if each
buyer simply claims the house that she likes best, each buyer ends up with a different
house: somehow the prices have perfectly resolved the contention for houses. And this
happens despite the fact that each buyer values the house of seller a the highest; it is
the high price of 5 that dissuades buyers y and z from pursuing this house.

We will call such a set of prices market clearing, since they cause each house to
get bought by a different buyer. In contrast, Figure 10.5(c) shows an example of prices
that are not market clearing, because buyers x and z both want the house offered by
seller a. In this case, when each buyer pursues the house that maximizes her payoff,



Each buyer creates a link to her preferred seller
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Figure 10.5. (a) Three sellers (a, b, and c) and three buyers (x , y, and z). For each buyer node,
the valuations for the houses of the respective sellers appear in a list next to the node. (b) Each
buyer creates a link to her preferred seller. The resulting set of edges is the preferred-seller
graph for this set of market-clearing prices. (c) The preferred-seller graph for prices 2, 1, and
0 (prices that don’t clear the market). (d) The preferred-seller graph for prices 3, 1, and 0
(market-clearing prices, where tie-breaking is required).

In Figures 10.5(b)–10.5(d), we show the results of three different sets of prices for
the same set of buyer valuations. Note how the sets of preferred sellers for each buyer
change depending on what the prices are. For example, in Figure 10.5(b), buyer x

would receive a payoff of 12 − 5 = 7 if she buys from a, a payoff of 4 − 2 = 2 if she
buys from b, and 2 − 0 = 2 if she buys from c. This is why a is her unique preferred
seller. We can similarly determine the payoffs for buyers y (3, 5, and 6) and z (2, 3,
and 2) for transacting with sellers a, b, and c, respectively.

Market-Clearing Prices. Figure 10.5(b) has the particularly nice property that, if each
buyer simply claims the house that she likes best, each buyer ends up with a different
house: somehow the prices have perfectly resolved the contention for houses. And this
happens despite the fact that each buyer values the house of seller a the highest; it is
the high price of 5 that dissuades buyers y and z from pursuing this house.

We will call such a set of prices market clearing, since they cause each house to
get bought by a different buyer. In contrast, Figure 10.5(c) shows an example of prices
that are not market clearing, because buyers x and z both want the house offered by
seller a. In this case, when each buyer pursues the house that maximizes her payoff,

The preferred seller graph for this set of prices



Market-Clearing Prices
‣ The previous example shows a set of prices that is market-clearing, 

since they cause each house to get bought by a different buyer 

‣ But not all sets of prices are market-clearing!

15
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Figure 10.5. (a) Three sellers (a, b, and c) and three buyers (x , y, and z). For each buyer node,
the valuations for the houses of the respective sellers appear in a list next to the node. (b) Each
buyer creates a link to her preferred seller. The resulting set of edges is the preferred-seller
graph for this set of market-clearing prices. (c) The preferred-seller graph for prices 2, 1, and
0 (prices that don’t clear the market). (d) The preferred-seller graph for prices 3, 1, and 0
(market-clearing prices, where tie-breaking is required).

In Figures 10.5(b)–10.5(d), we show the results of three different sets of prices for
the same set of buyer valuations. Note how the sets of preferred sellers for each buyer
change depending on what the prices are. For example, in Figure 10.5(b), buyer x

would receive a payoff of 12 − 5 = 7 if she buys from a, a payoff of 4 − 2 = 2 if she
buys from b, and 2 − 0 = 2 if she buys from c. This is why a is her unique preferred
seller. We can similarly determine the payoffs for buyers y (3, 5, and 6) and z (2, 3,
and 2) for transacting with sellers a, b, and c, respectively.

Market-Clearing Prices. Figure 10.5(b) has the particularly nice property that, if each
buyer simply claims the house that she likes best, each buyer ends up with a different
house: somehow the prices have perfectly resolved the contention for houses. And this
happens despite the fact that each buyer values the house of seller a the highest; it is
the high price of 5 that dissuades buyers y and z from pursuing this house.

We will call such a set of prices market clearing, since they cause each house to
get bought by a different buyer. In contrast, Figure 10.5(c) shows an example of prices
that are not market clearing, because buyers x and z both want the house offered by
seller a. In this case, when each buyer pursues the house that maximizes her payoff,
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Figure 10.5. (a) Three sellers (a, b, and c) and three buyers (x , y, and z). For each buyer node,
the valuations for the houses of the respective sellers appear in a list next to the node. (b) Each
buyer creates a link to her preferred seller. The resulting set of edges is the preferred-seller
graph for this set of market-clearing prices. (c) The preferred-seller graph for prices 2, 1, and
0 (prices that don’t clear the market). (d) The preferred-seller graph for prices 3, 1, and 0
(market-clearing prices, where tie-breaking is required).

In Figures 10.5(b)–10.5(d), we show the results of three different sets of prices for
the same set of buyer valuations. Note how the sets of preferred sellers for each buyer
change depending on what the prices are. For example, in Figure 10.5(b), buyer x

would receive a payoff of 12 − 5 = 7 if she buys from a, a payoff of 4 − 2 = 2 if she
buys from b, and 2 − 0 = 2 if she buys from c. This is why a is her unique preferred
seller. We can similarly determine the payoffs for buyers y (3, 5, and 6) and z (2, 3,
and 2) for transacting with sellers a, b, and c, respectively.

Market-Clearing Prices. Figure 10.5(b) has the particularly nice property that, if each
buyer simply claims the house that she likes best, each buyer ends up with a different
house: somehow the prices have perfectly resolved the contention for houses. And this
happens despite the fact that each buyer values the house of seller a the highest; it is
the high price of 5 that dissuades buyers y and z from pursuing this house.

We will call such a set of prices market clearing, since they cause each house to
get bought by a different buyer. In contrast, Figure 10.5(c) shows an example of prices
that are not market clearing, because buyers x and z both want the house offered by
seller a. In this case, when each buyer pursues the house that maximizes her payoff,

market-clearingnot market-clearing



A set of prices is market clearing if the 
resulting preferred-seller graph has a 
perfect matching.



Market-clearing prices: Too good to be true?

‣ If sellers set prices the right way, then self-interest runs its 
course and all the buyers get out of each other’s way and 
claim different houses 

‣ We’ve seen that such prices can be achieved in our small 
example; but in fact, something much more general is true! 

‣ The existence of Market-Clearing Prices: For any set of 
buyer valuations, there exists a set of market-clearing prices.

17



Market-clearing prices and social welfare
‣ Just because market-clearing prices resolve the contention among 

buyers, causing them to get different houses, does this mean that the 
total valuation of the resulting assignment will be good?  

‣ It turns out that market-clearing prices for this buyer-seller matching 
problem always provide socially optimal outcomes! 

‣ The optimality of Market-Clearing Prices: For any set of market-
clearing prices, a perfect matching in the resulting preferred-seller 
graph has the maximum total valuation of any assignment of sellers to 
buyers.

18



Optimality of Market-Clearing Prices
‣ Consider a set of market-clearing prices, and let M be a perfect matching in the 

preferred-seller graph 

‣ Consider the total payoff of this matching, defined as the sum of each buyer’s payoff for 
what she gets 

‣ Since each buyer is grabbing a house that maximizes her payoff individually, M has the 
maximum total payoff of any assignment of houses to buyers 

‣ But the sum of all prices is something that doesn’t depend on which matching we choose 

‣ So the matching M maximizes the total valuation

19
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the maximum total payoff of any assignment of houses to buyers. Now how does total
payoff relate to total valuation, which is what we’re hoping that M maximizes? If buyer
j chooses house i, then her valuation is vij and her payoff is vij − pi . Thus, the total
payoff to all buyers is simply the total valuation, minus the sum of all prices:

Total Payoff of M = Total Valuation of M − Sum of all prices.

But the sum of all prices is something that doesn’t depend on which matching we
choose (it’s just the sum of everything the sellers are asking for, regardless of how they
get paired up with buyers). So a matching M that maximizes the total payoff is also
one that maximizes the total valuation. This completes the argument.

There is another important way of thinking about the optimality of market-clearing
prices, which turns out to be essentially equivalent to the formulation we’ve just
described. Suppose that, instead of thinking about the total valuation of the matching,
we think about the total of the payoffs received by all participants in the market – both
the sellers and the buyers. For a buyer, her payoff is defined as above: it is her valuation
for the house she gets minus the price she pays. A seller’s payoff is simply the amount
of money he receives in payment for his house. Therefore, in any matching, the total of
the payoffs to all the sellers is simply equal to the sum of the prices (since they all get
paid, and it doesn’t matter which buyer pays which seller). Above, we just argued that
the total of the payoffs to all the buyers is equal to the total valuation of the matching
M , minus the sum of all prices. Therefore, the total of the payoffs to all participants –
both the sellers and the buyers – is exactly equal to the total valuation of the matching
M; the point is that the prices detract from the total buyer payoff by exactly the amount
that they contribute to the total seller payoff; hence, the sum of the prices cancels
out completely from this calculation. Therefore, to maximize the total payoffs to all
participants, we want prices and a matching that lead to the maximum total valuation,
and this is achieved by using market-clearing prices and a perfect matching in the
resulting preferred-seller graph. We can summarize this as follows.

Optimality of Market-Clearing Prices (equivalent version): A set of market-
clearing prices, and a perfect matching in the resulting preferred-seller graph,
produces the maximum possible sum of payoffs to all sellers and buyers.

10.4 Constructing a Set of Market-Clearing Prices

Now let’s turn to the harder challenge: understanding why market-clearing prices must
always exist. We’re going to do this by taking an arbitrary set of buyer valuations
and describing a procedure that arrives at market-clearing prices. The procedure will
in fact be a kind of auction – not a single-item auction of the type we discussed
in Chapter 9, but a more general kind that takes into account the fact that there are
multiple things being auctioned and multiple buyers with different valuations. This
particular auction procedure was described by the economists Demange, Gale, and
Sotomayor in 1986 [129], but it’s actually equivalent to a construction of market-
clearing prices discovered by the Hungarian mathematician Egerváry seventy years
earlier, in 1916 [280].



Alternatively, consider the total payoffs

‣ Consider the total payoffs of sellers and buyers 

‣ Equivalently, we have — 

‣ Optimality of Market-Clearing Prices: A set of market-
clearing prices, and a perfect matching in the resulting 
preferred-seller graph, produces the maximum possible sum 
of payoffs to all sellers and buyers.

20



Why do market-clearing prices always exist?

We prove this by designing a 
construction algorithm that, taking an 
arbitrary set of buyer valuations, arrives 
at market-clearing prices.



Constructing a set of market-clearing prices
‣ The algorithm looks like an auction for multiple items to sell— 
‣ Initially, all sellers set their prices to 0 
‣ Buyers react by choosing their preferred sellers, forming a graph 
‣ If this preferred-seller graph has a perfect matching, we are done 
‣ Otherwise, there is a constricted set based on the Matching Theorem, 

where many buyers are interested in a smaller number of sellers 
‣ The sellers in the constricted set raise their price by 1 
‣ Reduction: reduce the lowest price to 0, if it is not already 
‣ Begin the next round of auction

22



Example of the construction algorithm
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Figure 10.6. The auction procedure applied to the example from Figure 10.5. Each separate
picture shows steps (i) and (ii) of successive rounds, in which the preferred-seller graph for
that round is constructed. (a) In the first round, all prices start at 0. The set of all buyers forms
a constricted set S, with N(S) equal to the seller a. So a raises his price by one unit and the
auction continues to the second round. (b) In the second round, the set of buyers consisting
of x and z forms a constricted set S, with N(S) again equal to seller a. Seller a again raises
his price by one unit and the auction continues to the third round. (Notice that in this round,
we could have alternatively identified the set of all buyers as a different constricted set S, in
which case N(S) would have been the set of sellers a and b. There is no problem with this – it
just means that there can be multiple options for how to run the auction procedure in certain
rounds, with any of these options leading to market-clearing prices when the auction comes
to an end.) (c) In the third round, the set of all buyers forms a constricted set S, with N(S)
equal to the set of two sellers a and b. So a and b simultaneously raise their prices by one unit
each, and the auction continues to the fourth round. (d) In the fourth round, when we build
the preferred-seller graph, we find it contains a perfect matching. Hence, the current prices
are market clearing, and the auction comes to an end.

change, different constricted sets form at different points in time, and eventually the
auction stops with a set of market-clearing prices. But why should this happen in
general? Why couldn’t there be a set of valuations that cause the prices to constantly
shift around so that some set of buyers is always constricted, and the auction never
stops?

In fact, the prices can’t shift forever without stopping; the auction must always come
to an end. The way we’re going to show this is by identifying a precise sense in which
a certain kind of “potential energy” is draining out of the auction as it runs; since the



Why must this algorithm terminate?
‣ Define the potential of a buyer to be the maximum payoff she can 

currently get from any seller 
‣ She will get this payoff if the prices are market-clearing 

‣ Define the potential of a seller to be the current price he is charging 
‣ He will actually get this payoff if the prices are market-clearing 

‣ Define the potential energy of the auction to be the sum of the 
potential of all participants, both buyers and sellers 

‣ We are going to see that the potential energy decreases by at least 
one unit in each round while the auction runs
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The potential energy decreases
‣ The potential energy is at least 0 at the start of each round 

‣ The reduction of prices does not change the potential energy of the auction 
‣ If we subtract p from each price, then the potential of each seller drops by p, but the 

potential of each buyer goes up by p 

‣ What happens to the potential energy of the auction when the sellers in the 
constricted set S all raise their prices by one unit? 
‣ Sellers in N(S): potential goes up by one unit in each seller 

‣ Buyers in S: potential goes down by one unit in each buyer 

‣ Since we have more buyers than sellers, the potential energy of the auction goes 
down by at least one unit more than it goes up
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We have proved that our construction 
algorithm converges to a set of market-
clearing prices, and that it always terminates. 



Sponsored Search Markets 
(Required reading: Ch. 15)





Clickthrough Rates and Revenues per Click
‣ A few assumptions before we construct a matching market between 

advertisers and slots 

‣ Clickthrough rates ri 
‣ Advertisers know the clickthrough rates 

‣ The clickthrough rate depends only on the slot, not on the ad itself 

‣ The clickthrough rate of a slot doesn’t depend on the ads that are in other slots 

‣ Each advertiser has a Revenue per Click vj 
‣ It is assumed to be intrinsic to the advertiser and does not depend on what’s 

shown on the page when the user clicked the ad
29



Constructing a Matching Market

30

advertising as a matching market 389

a

b

c

x

y

z

3

2

1

slots advertisers revenues
 per click

clickthrough
 rates

10

5

2

Figure 15.2. In the basic setup of a search engine’s market for advertising, there are a certain
number of advertising slots to be sold to a population of potential advertisers. Each slot has
a clickthrough rate: the number of clicks per hour it will receive, with higher slots generally
getting higher clickthrough rates. Each advertiser has a revenue per click, the amount of money
it expects to receive, on average, each time a user clicks on one of its ads and arrives at its site.
We draw the advertisers in descending order of their revenue per click; for now, this is purely
a pictorial convention, but in Section 15.2 we show that the market in fact generally allocates
slots to the advertisers in this order.

To cast the search engine’s advertising market for a particular keyword in this
framework, we use ri to denote the clickthrough rate of slot i, and vj to denote the
revenue per click of advertiser j . The benefit that advertiser j receives from being shown
in slot i is then just rivj , the product of the number of clicks and the revenue per click.

In the language of matching markets, this is advertiser j ’s valuation vij for slot i –
the value it receives from acquiring slot i. So by declaring the slots to be the sellers, the
advertisers to be the buyers, and the buyers’ valuations to be vij = rivj , the problem
of assigning slots to advertisers is precisely the problem of assigning sellers to buyers
in a matching market. In Figure 15.3(a), we show how this conversion is applied to
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Figure 15.3. The allocation of advertising slots to advertisers can be represented as a matching
market, in which the slots are the items to be sold, and the advertisers are the buyers. (a)
An advertiser’s valuation for a slot is simply the product of its own revenue per click and the
clickthrough rate of the slot; these can be used to determine (b) market-clearing prices for the
slots.
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The Matching Market and Market-Clearing Prices
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One problem remains
‣ This construction of market-clearing prices can only be carried out by 

Google if it actually knows the valuations of the advertisers! 
‣ Google must rely on advertisers to report their own independent, private 

valuations without being able to know whether this reporting is truthful 
‣ Google needs to encourage truthful bidding 
‣ Recall that truthful bidding is a dominant strategy for second-price 

auctions in the single-item setting 
‣ But we now have multiple items to sell in our market! 
‣ Can we generalize second-price auctions to a multiple-item setting?
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The Vickrey-Clarke-Groves (VCG) Principle
‣ We need to view second-price auctions in a less obvious way 
‣ The single-item second-price auction produces an allocation that maximizes 

social welfare — the bidder who values the item the most gets it 
‣ The winner of the auction is charged an amount equal to the “harm” he causes 

the other bidders by receiving the item 
‣ Suppose the bidders’ values for the item are v1 v2 v3 v4 ... vn in decreasing order 
‣ If bidder 1 were not present, the item would have gone to bidder 2, who values 

it at v2 
‣ Bidders 2 through n collectively experience a harm of v2 at the time when 

bidder 1 gets in!

33



VCG: Encouraging Truthful Reporting
‣ The Vickrey-Clarke-Groves (VCG) principle (in their 1961, 1971, 

1973 papers): each individual is charged a price equal to the 
total amount everyone would be better off if this individual 
weren’t there 

‣ This is a non-obvious way to think about single-item second-price 
auctions 

‣ But it is a principle that turns out to encourage truthful reporting of 
private values in much more general cases!
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Applying VCG to Matching Markets
‣ In a matching market, we have a set of buyers and a set of sellers — with 

equal numbers of each — and buyer j has a valuation of vij for the item 
being sold by seller i 

‣ Each buyer knows her own valuations, but they are not known to other 
buyers or to the sellers — they have independent, private values 

‣ We first assign items to buyers so as to maximize the total valuation 

‣ Based on VCG, the price buyer j should pay for seller i’s item is the “harm” 
she causes to the remaining buyers through her acquisition of this item
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Figure 15.4. The VCG price an individual buyer pays for an item can be determined by working
out how much better off all other buyers would be if this individual buyer were not present: (a)
determining how much better off y and z would be if x were not present and (b) determining
how much better off x and z would be if y were not present.

receives it – is the harm she causes to the remaining buyers through her acquisition of
this item. This value is equal to the total boost in valuation everyone else would get
if we computed the optimal matching without buyer j present. To give a better sense
of how this principle works for matching markets, we first walk through how it would
apply to the example in Figure 15.3. We then define the VCG price-setting mechanism
in general, and in the next section we show that it yields truth-telling as a dominant
strategy: for each buyer, truth-telling is at least as good as any other option, regardless
of what the other buyers are doing.

In Figure 15.3, where the buyers are advertisers and the items are advertising slots,
suppose we assign items to maximize total valuation: item a to buyer x, item b to buyer
y, and item c to buyer z. What prices does the VCG principle dictate for each buyer?
We show the reasoning in Figure 15.4.

! First, in the optimal matching without buyer x present, buyer y gets item a

and buyer z gets item b. This outcome improves the respective valuations of y

and z for their assigned items by 20 − 10 = 10 and 5 − 2 = 3, respectively. The
total harm caused by x is therefore 10 + 3 = 13, and so this is the price that x

should pay.



VCG Prices for General Matching Markets
‣ Let S denote the set of sellers and B denote the set of buyers 

‣ Let VBS denote the maximum total valuation over all possible perfect 
matchings of sellers and buyers 

‣ let S–i denote the set of sellers with seller i removed, and let B–j 
denote the set of buyers with buyer j removed 

‣ Thus, the total harm caused by buyer j to the rest of the buyers is the 
difference between how they’d do without j present and how they do 
with j present — 
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! In the optimal matching without buyer y present, buyer x still gets a (so she is
unaffected), while buyer z gets item b, for an improved valuation of 3. The total
harm caused by y is 0 + 3 = 3, and so this is the price that y should pay.! Finally, in the optimal matching without buyer z present, buyers x and y each get
the same items they would have gotten had z been there; buyer z causes no harm
to the rest of the world, and so her VCG price is 0.

With this example in mind, we now describe the VCG prices for a general matching
market. This follows exactly from the principle we’ve been discussing, but it requires
a bit of notation due to the multiple items and valuations. First, let S denote the set of
sellers and B denote the set of buyers. Let V S

B denote the maximum total valuation over
all possible perfect matchings of sellers and buyers – simply the value of the socially
optimal outcome with all buyers and sellers present.

Now, let S–i denote the set of sellers with seller i removed, and let B–j denote
the set of buyers with buyer j removed. So if we give item i to seller j , then the
best total valuation the rest of the buyers could get is V S−i

B−j : this is the value of the
optimal matching of sellers and buyers when we’ve taken item i and buyer j out of
consideration. On the other hand, if buyer j simply didn’t exist but item i were still an
option for everyone else, then the best total valuation the rest of the buyers could get is
V S

B−j . Thus, the total harm caused by buyer j to the rest of the buyers is the difference
between how they’d do without j present and how they do with j present; in other
words, it is the difference V S

B−j − V S−i
B−j . This is the VCG price pij that we charge to

buyer j for item i, so we have the equation

pij = V S
B−j − V S−i

B−j . (15.1)

The VCG Price-Setting Mechanism. Using the ideas developed so far, we can now
define the complete VCG price-setting mechanism for matching markets. We assume
that there is a single price-setting authority (an “auctioneer”) who can collect informa-
tion from buyers, assign items to them, and charge prices. Fortunately, this framework
works very well for selling advertising slots, where all the items (the slots) are under
the control of a single agent (the search engine).

The mechanism works as follows:

1. Ask buyers to announce valuations for the items. (These announcements need not
be truthful.)

2. Choose a socially optimal assignment of items to buyers – that is, a perfect match-
ing that maximizes the total valuation of each buyer for what they get. This as-
signment is based on the announced valuations (since that’s all we have access to.)

3. Charge each buyer the appropriate VCG price; that is, if buyer j receives item i

under the optimal matching, then charge buyer j a price pij determined according
to Equation (15.1).

Essentially, what the auctioneer has done is to define a game that the buyers play.
They must choose a strategy (a set of valuations to announce), and they receive a
payoff – their valuation for the item they get, minus the price they pay. What turns out
to be true, though it is far from obvious, is that this game has been designed to make
truth-telling – in which a buyer announces her true valuations – a dominant strategy.
We will prove this in the next section; but before this, we make a few observations.



The VCG Price-Setting Mechanism
‣ Do the following on a price-setting authority (called “auctioneer,” e.g., 

Google): 
‣ Ask buyers to announce valuations for the items (need not be truthful) 

‣ Choose a socially optimal assignment of items to buyers — a perfect matching 
that maximizes the total valuation of each buyer for what they get 

‣ Charge each buyer the appropriate VCG price 

‣ What the authority did was to define a game that the buyers play — 
‣ They must choose a strategy (a set of valuations to announce) 

‣ And they receive a payoff: their valuation minus the price they pay
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VCG prices vs. market-clearing prices
‣ The VCG prices are different from market-clearing prices 
‣ Market-clearing prices are posted prices, in that the seller simply announced 

a price and was willing to charge it to any buyer who was interested 

‣ VCG prices are personalized prices, they depend on both the item being sold 
and the buyer to whom it is being sold 

‣ The VCG price pij paid by buyer j for item i may be different from the VCG 
price pik that buyer k would pay 

‣ The VCG prices correspond to the sealed-bid second-price auction 
‣ Market-clearing prices correspond to a generalization of the ascending 

(English) auction
39



Despite their definition as personalized 
prices, VCG prices are always market 
clearing.



Revisiting our example with market-clearing prices
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Figure 15.9. A matching market, with valuations and market-clearing prices specified, and a
perfect matching in the preferred-seller graph indicated by the bold edges.

We could perform the corresponding analysis to get the VCG prices for items b and c,
and we’d see that the values are 1 and 0, respectively. In other words, we again find
that the VCG prices are also market-clearing prices.

In this section, we show that the relationship suggested by these examples holds in
general. Our main result is that, despite their definition as personalized prices, VCG
prices are always market clearing. That is, suppose we were to compute the VCG
prices for a given matching market, first determining a matching of maximum total
valuation and then assigning each buyer the item they receive in this matching, with a
price tailored for this buyer–seller match. Then, however, suppose we go on to post the
prices publicly: rather than requiring buyers to follow the matching used in the VCG
construction, we allow any buyer to purchase any item at the indicated price. We will
see that despite this greater freedom, each buyer will in fact achieve the highest payoff
by selecting the item she was assigned when the VCG prices were constructed. This
will establish that the prices are market clearing under the definition from Chapter 10.

First Steps Toward a Proof. Let’s think for a minute about how you might prove such
a fact, once you start to suspect from simple examples that it might be true. It’s tempting
to start with the very compact formula defining the VCG prices – Equation (15.1) –
and then to somehow reason about this formula to show that it has the market-clearing
property.

In fact, it’s tricky to make this approach work, and it’s useful to understand why.
Recall that Equation (15.1) says that if item i is assigned to buyer j in the optimal
matching then we should charge a price of

V S
B−j − V S−i

B−j ,

where V S
B−j is the total valuation of an optimal matching with j removed, and V S−i

B−j is
the total valuation of an optimal matching with both i and j removed. Now, the term
V S

B−j is in fact a sum of many smaller terms, each consisting of the valuation of a
distinct buyer for the item she is assigned in an optimal matching. Similarly, V S−i

B−j is a
sum of many terms, but the key conceptual difficulty is the following: V S

B−j and V S−i
B−j

arise from different matchings – potentially very different matchings – and so there is



VCG prices are always market clearing
‣ Suppose we were to compute the VCG prices for a given matching market 
‣ First determine a matching of a maximum total valuation 

‣ Then assign each buyer the item they receive in this matching, with a price 
tailored for this buyer-seller match 

‣ Then, we go on to post the VCG prices publicly 
‣ Rather than requiring buyers to follow the matching used in the VCG 

construction, we allow any buyer to purchase any item at the indicated price! 

‣ Despite this freedom, each buyer will in fact achieve the highest payoff by 
selecting the item she was assigned when VCG prices were constructed!
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Being truthful is the dominant strategy in 
the VCG price-setting mechanism.



Claim: If items are assigned and prices computed 
according to the VCG mechanism, then truthfully 
announcing valuations is a dominant strategy for each 
buyer, and the resulting assignment maximizes the total 
valuation of any perfect matching of items and buyers.



Why is truth-telling a dominant strategy?
‣ Suppose that buyer j announces her valuations truthfully, and in the matching we 

assign her item i.  Her payoff is vij - pij. 

‣ If buyer j decides to lie about her valuations, either this lie does not affect the 
item she gets, or it does 

‣ If she still gets the same item i, then her payoff remains exactly the same — since 
the price pij is computed only using announcements by buyers other than j 

‣ If she gets a different item h, her payoff would be vhj - phj 

‣ We need to show there’s no incentive to lie and receive item h instead of i 

‣In other words, we need to show 
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The second part of this claim (that the total valuation is maximized) is easy to justify:
if buyers report their valuations truthfully, then the assignment of items is designed to
maximize the total valuation by definition.

The first part of the claim is more subtle: why is truth-telling a dominant strategy?
Suppose that buyer j announces her valuations truthfully, and in the matching we
assign her item i. Then her payoff is vij − pij . We want to show that buyer j has no
incentive to deviate from a truthful announcement.

If buyer j decides to lie about her valuations, then one of two things can happen:
either this lie affects the item she gets, or it doesn’t. If buyer j lies but still gets the same
item i, then her payoff remains exactly the same, because the price pij is computed
only using announcements by buyers other than j . So if a deviation from truth-telling
is going to be beneficial for buyer j , it has to affect the item she receives.

Suppose, therefore, that buyer j lies about her valuations and gets item h instead of
item i. In this case, her payoff would be vhj − phj . Notice again that the price phj is
determined only by the announcements of buyers other than j . To show that there is
no incentive to lie and receive item h instead of i, we need to show that

vij − pij ≥ vhj − phj .

If we expand out the definitions of pij and phj using Equation (15.1), this is equivalent
to showing

vij −
(
V S

B−j − V S−i
B−j

)
≥ vhj −

(
V S

B−j − V S−h
B−j

)
.

Both sides of this inequality contain the term V S
B−j , so we can add this to both sides;

in this way, the previous inequality is equivalent to showing

vij + V S−i
B−j ≥ vhj + V S−h

B−j . (15.2)

We now argue why this last inequality holds. In fact, the left- and right-hand sides
each describe the total valuation of different matchings, as shown in Figure 15.5. The
matching on the left-hand side is constructed by pairing j with the item i she would get
in an optimal matching and then optimally matching the remaining buyers and items.
In other words, it is a matching that achieves the maximum total valuation over all
possible perfect matchings, so we can write the left-hand side as

vij + V S−i
B−j = V S

B . (15.3)

In contrast, the matching on the right-hand side of Inequality (15.2) is constructed by
pairing j with some other item h and then optimally matching the remaining buyers
and items. So it is a matching that achieves the maximum total valuation only over
those matchings that pair j with h. Therefore,

vhj + V S−h
B−j ≤ V S

B .

The left-hand side of Inequality (15.2) – the maximum valuation with no restrictions
on who gets any slot – must be at least as large as the right-hand side – the maximum
with a restriction. And this is what we wanted to show.

Nothing in this argument depends on the decisions made by other buyers about what
to announce. For example, it doesn’t require them to announce their true values; the
arguments comparing different matchings can be applied to whatever valuations are
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Figure 15.5. The heart of the proof that the VCG mechanism encourages truthful bidding
comes down to a comparison of the value of two matchings: (a) vi j + V S−i

B− j is the maximum
valuation of any matching and (b) vhj + V S−h

B− j is the maximum valuation only over matchings
constrained to assign h to j .

announced by the other buyers, with the same consequences. Thus, we have shown
that truthfully announcing valuations is a dominant strategy in the VCG mechanism.

To close this section, let’s go back to the specific case of keyword-based advertising,
in which the buyers correspond to advertisers and the items for sale correspond to
advertising slots. Our discussion so far has focused on finding and achieving an assign-
ment of advertisers to slots that maximizes the total valuation obtained by advertisers.
But of course, this is not what the search engine selling the advertising slots directly
cares about. Instead it cares about its revenue: the sum of the prices that it can charge
for slots. It is not clear that the VCG mechanism is the best way to generate revenue for
the search engine. Determining which procedure maximizes seller revenue is a current
topic of research. It could be that the best a seller can do is to use some procedure that
generates an optimal matching, and potentially one that is better than VCG at convert-
ing more of the total valuation into seller revenue. Or it could be that the seller is better
off using a procedure that does not always yield an optimal matching. And it may be
that some version of a revenue-equivalence principle – such as we saw for single-item
auctions in Chapter 9 – holds here as well, showing that certain classes of auction
provide equivalent amounts of revenue to the seller when buyers behave strategically.

In the next sections, we sample the general flavor of some of these revenue issues by
considering the alternative to VCG that the search industry has adopted in practice – a



Going back to keyword-based advertising
‣ Our discussion so far has focused on finding and 
achieving an assignment of advertisers to slots that 
maximizes the total valuation obtained by advertisers 

‣ But of course, this is not what Google cares about! 

‣ Instead, Google cares about its revenue: the sum of prices 
that it can charge for slots 

‣ This is easy to say, but hard to do — still a topic of research
47



The Generalized Second-Price Auction
‣ All search engines have adopted the Generalized Second-Price (GSP) auction 
‣ Originally developed by Google (no surprise) 
‣ We will see that it is a generalization of second-price auctions only in a 

superficial sense: it doesn’t retain the nice properties of the second-price 
auction and VCG 

‣ Each advertiser j announces a bid consisting of a single number bj — the price 
it is willing to pay per click 
‣ It is up to the advertiser whether or not its bid is equal to its true valuation per 

click, vj 

‣ The GSP auction awards each slot i to the ith highest bidder, at a price per click 
equal to (a penny higher than) the (i+1)st highest bid
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Formulating the GSP auction as a game
‣ To analyze GSP, we formulate the problem as a game 
‣ Each advertiser is a player, its bid is its strategy, and its 
payoff is its valuation minus the price it pays 
‣ Assuming that each player knows the full set of payoffs 
to all players
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Bad news about the GSP auction
‣ Truth-telling may not constitute a Nash equilibrium 
‣ There can be multiple possible Nash equilibria 
‣ Some of these equilibria may produce assignments of 
advertisers to slots that are not be socially optimal, in that 
they do not maximize the total advertiser valuation 
‣ The revenue to the search engine (sum of prices) may be 
higher or lower than the VCG price-setting mechanism
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Good news about the GSP auction

‣ There is always at least one Nash equilibrium set of 
bids for the GSP 

‣ Among the (possibly multiple) equilibria, there is 
always one that does maximize total advertiser 
valuation
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Required reading: “Networks, Crowds, and 
Markets,” Chapter 10.1—10.5, 15


